Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

* 2 2 1 3 4 5 4 5 7

FURTHER MATHEMATICS

9231/13

Paper 1 Further Pure Mathematics 1

May/June 2022

2 hours

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

BLANK PAGE

[2]

1	(a)	Sketch the curve with equation $y = \frac{x+1}{x-1}$.
•	(44)	x-1.

(b) Sketch the curve with equation
$$y = \frac{|x|+1}{|x|-1}$$
 and find the set of values of x for which $\frac{|x|+1}{|x|-1} < -2$.

Find	the value of	of $\alpha^2 + \beta^2$	$+\gamma^2$.								
•••••			•••••		•••••						
•••••		••••••	••••••	•••••	•••••	•••••	•••••	•••••		••••••	••••••
•••••			•••••		•••••					•••••	• • • • • • • • • • • • • • • • • • • •
•••••	•••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	••••••	•	•••••	••••••
••••		•••••	•••••		•••••	•••••				•••••	
••••			•••••		•••••						
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •
••••			•••••		•••••						
••••			• • • • • • • • • • • • • • • • • • • •		•••••						
••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
• • • • • •			•••••		•••••						
•••••	•••••••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	••••••	••••••	•	••••••	••••••
••••		•••••	•••••	•••••	•••••	•••••	•••••	•••••			
••••			•••••		•••••						
•••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	••••••		•••••	••••••
•••••					•••••						• • • • • • • • • • • • • • • • • • • •
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	•••••
•••••		•••••	•••••	•••••	•••••		•••••	•••••			

(b)	Show that the matrix $\begin{pmatrix} 1 & \alpha & \beta \\ \alpha & 1 & \gamma \\ \beta & \gamma & 1 \end{pmatrix}$ is singular.	[4]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

\- - /	Find the equations of the asymptotes of <i>C</i> .	
		• • •
		•••
		• • •
		•••
		•••
		•••
		•••
		•••
		•••
(b)		
	Show that there is no point on C for which $1 < y < 1 + 4a$.	
	Show that there is no point on C for which $1 < y < 1 + 4a$.	•••
	Show that there is no point on C for which $1 < y < 1 + 4a$.	•••
	Show that there is no point on C for which $1 < y < 1 + 4a$.	•••
	Show that there is no point on C for which $1 < y < 1 + 4a$.	•••
	Show that there is no point on C for which $1 < y < 1 + 4a$.	•••

••••••	 	•••••		•••••••
•••••	 			•••••
	 			•••••
•••••	 			
	 	•••••		
	 		resections with the axes.	

()	Using the method of differences, or otherwise, find $\sum_{r=1}^{n} u_r$ in terms of n and x .	
		•••••
		••••••
		•••••
		•••••
(b)	Deduce the set of non-zero values of <i>x</i> for which the infinite series	
	$u_1 + u_2 + u_3 + \dots$	
	is convergent and give the sum to infinity when this exists.	
	is convergent and give the sum to mininty when this exists.	
	is convergent and give the sum to minimity when this exists.	
	is convergent and give the sum to minimity when this exists.	
	is convergent and give the sum to mininty when this exists.	
	is convergent and give the sum to mininty when this exists.	
	is convergent and give the sum to mininty when this exists.	
	is convergent and give the sum to mininty when this exists.	
	is convergent and give the sum to minimity when this exists.	
	is convergent and give the sum to minity when this exists.	
	as convergent and give the sum to infinity when this exists.	

	л
(c)	Using a standard result from the list of formulae (MF19), find $\sum_{r=1}^{n} \ln u_r$ in terms of n and x . [3]

	etrical transformation in the x – y plane represented by A	
Prove by mathematical ind	duction that, for all positive integers n ,	
Trove by madicination me	$\mathbf{A}^n = \begin{pmatrix} 1 & na \\ 0 & 1 \end{pmatrix}.$	

Let $\mathbf{B} = \begin{pmatrix} b & b \\ a^{-1} & a^{-1} \end{pmatrix}$, where *b* is a positive constant.

represented by $\mathbf{A}^n \mathbf{B}$.	[6

[2]

6	The curve C has Cartesian equation $x^2 + xy + y^2 = a$, where a is a positive constant.								
	(a)	Show that the polar equation of C is $r^2 = \frac{2a}{2 + \sin 2\theta}$. [3]							

© UCLES 2022 9231/13/M/J/22

(b) Sketch the part of *C* for $0 \le \theta \le \frac{1}{4}\pi$.

The region *R* is enclosed by this part of *C*, the initial line and the half-line $\theta = \frac{1}{4}\pi$.

(c) It is given that $\sin 2\theta$ may be expressed as $\frac{2 \tan \theta}{1 + \tan^2 \theta}$. Use this result to show that the area of *R* is

$$\frac{1}{2}a\int_0^{\frac{1}{4}\pi} \frac{1+\tan^2\theta}{1+\tan\theta+\tan^2\theta} d\theta$$

and use the substitution $t = \tan \theta$ to find the exact value of this area.	[8]
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

7	The position vectors of the	points A, B, C, D	are	
	$7\mathbf{i} + 4\mathbf{j} - \mathbf{k}$	11i + 3j,	$2\mathbf{i} + 6\mathbf{j} + 3\mathbf{k}$,	$2\mathbf{i} + 7\mathbf{j} + \lambda\mathbf{k}$

respectively.

(a)	Given that $\lambda^2 - 5\lambda + 4$	the since $t = 0$.	hortest	distance	between	the	line	AB	and	the	line	CD	is	3,	show	that [7]
		•••••						•••••		•••••			••••	••••	•••••	
				•••••			•••••	•••••		•••••			••••	••••	•••••	•••••
				•••••			•••••	•••••		• • • • • • •		•••••	••••		•••••	•••••
						•••••	•••••	•••••	•••••	•••••			••••	••••	•••••	•••••
		•••••		•••••		•••••	•••••	•••••	•••••	•••••	•••••		••••	••••	•••••	
						•••••	•••••	•••••	•••••	•••••			••••	••••	•••••	•••••
		•••••		•••••		•••••	•••••	•••••	•••••	•••••		•••••	•••••	••••	•••••	•••••
						•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••	••••	•••••	•••••
		•••••	•••••	•••••		•••••	•••••	•••••	•••••	• • • • • • •	• • • • • • • • • • • • • • • • • • • •		••••	••••	•••••	•••••
		•••••		•••••		•••••	•••••	•••••	•••••	•••••		•••••	•••••	••••	•••••	•••••
						•••••	•••••	•••••	•••••	• • • • • • •	••••••	•••••	••••	••••	•••••	•••••
		•••••				•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••	••••	•••••	•••••
				••••••		•••••	•••••	•••••	•••••	•••••	•••••		••••	••••	•••••	•••••
		•••••				•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	••••	•••••	•••••
		•••••		•••••		•••••	•••••	•••••	•••••	•••••	••••••	•••••	••••	••••	•••••	•••••
		•••••		•••••		•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••	••••	•••••	•••••
		•••••		••••••		•••••	•••••	•••••	•••••	• • • • • •	••••••	•••••	•••••	••••	•••••	•••••
		•••••	••••••			•••••	•••••	•••••	•••••	•••••	••••••	•••••	••••	••••	• • • • • • • • • • • • • • • • • • • •	•••••
	•••••	•••••		••••••		•••••	•••••	•••••	•••••	•••••	•••••		•••••	••••	•••••	•••••
	•••••	•••••		•••••		•••••	•••••	•••••	•••••	• • • • • • •	••••••	•••••	••••	••••	•••••	•••••
	•••••			•••••	••••••	•••••	•••••	•••••	•••••	•••••		•••••	••••	••••	•••••	•••••
		•••••	••••••			•••••	•••••	•••••	•••••	• • • • • • •	••••••	•••••	••••	••••	•••••	•••••
	•••••	•••••		••••••	••••••	•••••	•••••	•••••	•••••	•••••		•••••	••••	••••	•••••	•••••

	15	
Let Π_1	be the plane ABD when $\lambda = 1$.	
Let Π_2	be the plane ABD when $\lambda = 4$.	
(b) (i)	Write down an equation of Π_1 , giving your answer in the form $\mathbf{r} = \mathbf{a} + s\mathbf{b} + t\mathbf{c}$.	[2]
(ii)	Find an equation of Π_2 , giving your answer in the form $ax + by + cz = d$.	[4]
		•••••
		•••••
		••••••
		••••••

Additional page

If you use the following page to complete the answer to any question, the question number must be clearly shown.

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.